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Abstract-A modified Fourier series method is proposed for the torsion analysis of prismatic bars
with multiply connected cross sections. The key feature in the present approach is the combined use
of polynomials and Fourier series solutions unlike in the existing approaches which use the Fourier
series only. The replacement of the zeroth harmonic terms in the Fourier series solutions by carefully
selected polynomials resolves the major problem of functional dependence which the direct Fourier
series method may pose. The polynomials and Fourier series solutions are selected to satisfy the
governing equation exactly so that the numerical calculation is minimal. The effectiveness and
generality of the present method is verified through numerical examples. © 1997 Elsevier Science
Ltd.

1. INTRODUCTION

In the analysis of beam structures, the sectional properties such as bending and torsional
rigidities, and the magnitude and location of the maximum stress are usually of primary
interest. In the case of non-circular cylindrical beams subjected to twisting, the strength-of
material solutions cannot be used, and the warping of the cross section must be considered.

Although the exact solutions for warping of beams are available for some simple
geometries (Timoshenko, 1982), no closed-form solutions are possible for general cross
sections. Subsequently, several alternative analytical (Irschik, 1991; Rand, 1992) as well as
numerical (Mason and Herrmann, 1968; Ie and Kosmatka, 1992) methods are proposed.

Since the warping problems can be formulated with Laplace's or Poisson's equation,
it is worthwhile to review work done on the solution methods on these equations. Among
others, Bird and Steele (1992) proposed an efficient Fourier series method to solve Laplace's
equation in regions bounded only by circles. A similar effective approach for more general
geometries, has been developed by Kang (1992) and Kang et al. (1995) for polygonal plate
bending.

The technique by Kang (1992) and Kang et al. (1995), utilizing the Fourier series
solutions alone, can be applied to the present problem. In their formulation, however, the
governing Laplace equation is approximated as the Helmholtz equation with a small
parameter which is somewhat arbitrary; Laplace's equation cannot be solved directly with
his approach. This is due to the difficulty in treating the series terms associated with the
zeroth harmonics. In terms of computational efficiency, however, the technique is powerful
as the Fourier series solutions satisfy the Helmholtz equation exactly.

In this paper, we propose a modified Fourier series method for the torsion analysis of
bars with multiply connected cross sections bounded by straight edges. The present tech
nique also utilizes the Fourier series solutions, but carefully selected low-order polynomials,
which satisfy the governing equation, are also employed. More specifically, we replace the
typical series solutions associated with the zeroth harmonics with the present polynomials;
the former cannot represent global deformation with non-vanishing resultants, but the
latter can. Therefore, the governing differential equation, Laplace's equation, is directly
solved with this modification and thus the use of the artificial parameter suggested by earlier
investigations (Kang, 1992; Kang et al., 1995) is avoided.
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We remark that the significance of the use of polynomials instead of typical zeroth
harmonic series solutions has not been reported in the existing literature, and that the
correct form of the polynomials is presented here for the first time. The present method is
given first for simply connected convex cross sections and then extended to multiply
connected general cross sections. Its effectiveness and accuracy is examined by comparing
the present results with exact, or the ANSYS finite element results.

2. FORMULATION WITH THE WARPING FUNCTION

The torsional problems in prismatic bars are often formulated in terms of the Prandtl
stress function, which satisfies Poisson's equation (Sokolnikoff, 1956). Due to the analogy
between the Prandtl stress function and the deflection of a membrane under uniform
pressure, the stress function formulation has been preferred by several investigators. Alter
natively, the function representing the warping displacement, which satisfies Laplace's
equation, can be also used. The advantage of using the direct warping function is that no
extra compatibility condition is needed in bars of general cross sections and the warping
displacement can be directly obtained from the warping function. Because of these, the
warping function formulation will be employed in the present work.

If in-plane displacements are denoted by u and v, and the warping displacement by w
in a beam, then

U(X,Y,Z) = -IlZY; v(x,y,z) = IlZX; w(x,y,z) = Il¢(x,y)

where the warping function ¢ satisfies Laplace's equation (Sokolnikoff, 1956):

(I)

(2)

In eqn (I), x, y, Z are the Cartesian coordinates, and Il is the angle of twist per unit length
along the Z axis. The shear stress components are then expressed as

where G denotes the shear modulus.
The traction-free lateral surface condition can be expressed as

d¢
dv = YVx-xvy

(3)

(4)

and (v x , vv) is the outward unit normal vector along the boundary curve C of the cJrOss
section. From eqn (2) or eqn (4), it is straightforward to obtain

Ie ~~ ds = O. (5)

When the torsion problem is formulated in terms of the warping function ¢, eqn (5)
is not to be imposed explicitly. However, eqn (5) may be used as a criterion to check the
validity of any solution method.

Utilizing eqn (3), the torsional rigidity D can be written as

(6)

In eqn (6), the first integral over the cross sectional region R is simply the polar moment of
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Fig. I. The geometry of a convex polygon. The local Cartesian coordinates (x" y;) are introduced

at each edge.

inertia, and the second integral accounts for the contribution from the warping effect. In
the numerical calculation of D, it is convenient, particularly in polygonal regions, to
transform the two integrals in eqn (6) into the following line integrals:

If (X o~ - Y04J)dA = -f 4J (04J)dS
R OJ ox C ov

(7a)

(7b)

where we may take f = -l/3, and 9 = x 3/3 although other combinations off and 9 are
possible. The line integral in eqn (7a) can be obtained in closed form for polygonal regions,
and the line integral in eqn (7b) is particularly useful when 4J and o4J/ov are known on the
boundary C.

3. SOLUTION METHOD FOR CONVEX POLYGONAL CROSS SECTIONS

The present technique for the convex polygonal cross sections will be described in this
section, and the extension to general multiply connected cross sections will then follow in
the next section.

Among various ways to express the boundary conditions (either 4J or d4J/dv), one may
choose to express them in terms of the Fourier cosine series:

d4J(/) F~) Nh . nn
L;-d(X;'Yi = 0) = -2 + L f~) cos-

L
. Xi (i = 1, ... ,Ns )'

v n=l,

(8)

(9)

In eqns (8, 9), the local Cartesian coordinates Xi and Yi' shown in Fig. 1, are associated
with the ith edge oflength L; and N s is the total number ofedges. The nth Fourier coefficients
along the ith edge are denoted by W~) and F~/), and N h is the highest term in the series. The
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relation between (Xi,Yi) and the global Cartesian coordinates (X, Y) can be easily obtained:

{
Xi} = Ri {X-Xi};
Yi Y-Yi

[

COS B;
Ri = .

smBi

-SinB;]
cos Bi

where Xi and Yi are the global coordinates of the ith vertex and Bi is the angle between the
ith edge and the X-axis.

The superscript - in eqns (8, 9) is used to emphasize the quantities associated with the
boundary. Since F~) are defined as the series coefficients of L;iJljJ(i)/8v instead of 8ljJ(i)/8v,
and the scaling factor of 1/2 is used in the definition of the zeroth coefficient, the expression
for the virtual edge work is shown to be the following simple formt :

(10)

Guided by the form of the boundary conditions expressed as eqns (8, 9), one may
adopt the following base functions in a solution procedure:

N,

cP(x, Y) = L: cP(i) (Xi' yJ
i=l

N

h

()
(i) _ (i) mr nn

ljJ (X" Y,) - L: An cos L Xi exp - L.Yi
n=O I 1

(i = 1, ... ,N,).

(lla)

(11 b)

The nature of these functions is that

(1) they satisfy the governing differential equation exactly,
(2) the period of the series is 2Li where Li is the ith edge length,
(3) the functions cP(i) represent end effects decaying away from the boundary of the half

space (with Yi ~ 0).

Since these base functions satisfy the governing differential equation exactly, any
method based on these functions would require minimal numerical calculation. However,
the serious defect in using the base functions (11 b) alone is that the terms with n = (I do
not contribute to F~) of the boundary condition and, other terms with n f= 0 represent only
end-effect solutions. Therefore, it is clear that eqn (11 b) alone cannot be used to solve
Laplace's equation for general boundary conditions.

This problem was observed in Kang (1992) and Kang et al. (1995), and an attempt to
circumvent this problem was made by approximating Laplace's equation as

(12)

rather than finding the correct base functions. They approximated Laplace's equation by
eqn (12) with a very small number of k (but k f= 0), and constructed the functions similar
to (11). Although this technique was quite successful, the choice of the small parameter k
is determined by trial and error.

The purpose of the present work is to find an efficient method to solve Laplace's
equation directly without introducing the small numerical parameter k as in eqn (12). To
this end, we carefully reexamine the base functions cP(i) in eqn (11 b). Then it is found that
the terms with n = 0 (for i = 1, ... , N s ) in eqn (11 b), which give constant values, are not
functionally independent and produce zero values of 8cP/8v. In other words, the base
functions (11 b) for n = 0, when superposed for all i's, are neither independent, nor sufficient
to handle the boundary conditions with non-vanishing resultants along the edges.

t The consequence is that a matrix equivalent to the typical stiffness matrix, which will be constructed later,
becomes symmetric.
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To overcome this mathematical problem, many various forms of base functions have
been examined. The final form, we have selected, is quite simple:

N,

¢(X,y) = L ¢(i)(xi,y;)
;=1

(Ba)

(Bb)

Some remarks are to be made regarding the present choice. The base functions satisfy
the governing equation exactly and the terms associated with A~) are non-decaying func
tions. Perhaps, the novel features of the present technique are the combined use of poly
nomials and Fourier series type solutions, and the form of the selectedpolynomials. Although
the form (13b) looks quite simple, most time in this work has been spent on finding the
correct form of the base functions given here.

It is worthwhile to state the criteria used to choose appropriate base functions.

(1) The base functions must satisfy the governing equation for computational effec
tiveness.

(2) When ¢ is prescribed on all edges, the solution must be unique.
(3) When o¢lov is prescribed on all edges, the solution must be unique up to a constant

and the trial functions must satisfy eqn (5).
(4) The same form should be able to be used for all edges.
(5) Low-order polynomials are preferred for numerical efficiency.

Besides the polynomials (xJL i-- 1/2? - (yJL)2 given in eqn (Bb), some other simple
polynomials which satisfy the governing equation exactly have also been examined:

1, Xi, Yi, x;-Y; , XiYi' (14)

Interestingly enough, none of the polynomials in eqn (14) satisfies the criteria (2)
andlor (3). The proof has been done analytically for equilateral triangular, and rectangular
domains. However, for general geometries, the satisfaction of the criteria (2) and (3) is
checked numerically, which will be discussed later. Condition (4) is not a mathematical
requirement, but it is imposed for simpler and more efficient formulation. It is interesting
that the polynomials (xJL;)2 - (yJL)2 do not satisfy condition (2). With the addition of a
constant to (xJL)2-(YiIL;)2, (xiIL)2-(yJL;)2+ 1 can also satisfy condition (2). But a
further modification to (xJL i- 1/2)2 - (yJL)2 is shown to be converging faster in numerical
computation due to the symmetry nature about Xi'

The restriction in the present approach is that the base functions in eqn (13) work for
up to pentagonal domains. This is because only the functions, {I, X, Y, X2

- y2 and XY}
(where (X, Y) denotes the global coordinates) can be generated by the present base functions
associated with A~) (i = 1, ... , N s), and the present polynomials loose functional inde
pendence for polygonal domains with more than 5 edges. Although the correct form of
higher order polynomials may be found to handle the domain with more than 5 edges, the
method would not be simple or efficient. Thus, general domains are divided into super
elements, such as triangular, quadrilateral or pentagonal, and the extension to more general
cases will be given in the next section.

When either ¢ or o¢lov is prescribed along the edges of the boundary, the unknown
coefficients A~) (n = 0, ... , Nh , i = 1, ... ,Ns) in eqn (Bb) must be determined. Since the
boundary conditions are to be expressed in the form of the Fourier cosine series given in
eqns (8) and (9), the coefficient relation between (W~), F~i)) and A~) will be needed.

The results can be written in compact form as:
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W=WM'A (l5a)

F = FM'A (I5b)

where

-1::::) -1::::) r")A(2)
w= . F= . A= (I6a)

W;N,) , FL,) ,
AiN,l

and

l~] r'l C'l
/,(1) A(I)

W" ~ ~~. ;
F(i) = ;1 ; A(i) = .1 (16b)

/'(/) A(/)
N. N.

and the matrices WM and FM are simpler to construct from their submatrices WM(iJ) and
FM(iJ) :

[WM""
WM(1,2)

WM"N"]WM(2.1) WM(2.2) WM(2.N,)
WM=

WM(N,.l) WM(N,.2) WM(N"N,)

[FM""
FM(I,2)

FM"N"]FM(2.1) FM(2,2) FM(2,N,)

FM=

FM(N"l) FM(N,,2) ... FM(N"N,)

(I7a)

(I7b)

The matrices WM(iJ) and FM(iJ) denote the contributions of the base functions ¢IJ)

associated with the jth edge on the ith edge. It is important to note that the components of
the submatrices WM(iJ) are found in closed form from the following definition:

[(
X

j _ !)2-y21 = WM(iJ) + ~ WM(iJ) cos()Y)x)L. 2 J (0,0) L. (n,O) n /
J ',=0 n=l

(I8a)

N.

[cos}.~ exp( -A.~Yj)k=o = WM~~~+ L WM~~~) cos(A.~l)x;) (m ~ I) (I8b)
n=l

where A.~) = mr/L; and A.~ = mn/L j , and L; stands for the length of the ith edge. Similarly,

(m ~ I). (I9b)
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In order to differentiate the function defined in the jth local coordinates with respect
to the ith local coordinates, one can simply use the chain rule:

where OX)OYi and OY)OYi denote the coordinate relations. It should be emphasized again
here that all the elements WMi;f,;"j and FMi;f,;,,) are obtained in closed form without any
numerical integration.

The satisfaction of criteria (2) and (3) stated earlier can be checked by examining the
rank of WM and FM. Namely, the rank of WM must be equal to the dimension of WM,
and the rank of FM must be equal to I less than the dimension of FM due to eqn (5).

4. FORMULATION IN MULTIPLY CONNECTED REGIONS

In the previous section, the analysis is limited to general convex polygonal regions, up
to pentagonal. For other regions, they are subdivided into convex regions as shown in Fig.
2. Between the divided elements, the continuity relations must be used to form the final sets
of equations. To this end, it is convenient to form an element matrix KM., which relates
the warping displacement and its normal derivative along the boundary :

KMe = FMe'WM;J

(20a)

(20b)

where the subscript e is used to designate the quantities defined for each element, and Fe
and We are the quantities defined in eqn (16) along the edges of an element.

For consistent sign convention, the element edges are always numbered counter
clockwisely. Considering the symmetry nature of the Fourier cosine series and the orien
tation of the adjacent local coordinates, one can show that the continuity conditions along
the adjacent edges, in terms of the Fourier cosine series coefficients, are expressed as

and

(a)

(k = 0,2,4, )

(k = 1,3, )

(b)

(21a)

Fig. 2. The multiply connected cross section shown in (a) is subdivided into several convex cross
sections as suggested in (b).
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(k = 0,2,4, )

(k = 1,3, )
(2Ib)

where the primed quantities are those associated with the adjacent element. Except that the
signs in eqn (21) are carefully selected, the assembling procedure to form the global matrix
KMg defined below is almost identical to that used in the finite element analysis; there is
no need to explain the assembling procedure in detail. The results is

(22)

Ne Ne

KMg = L KMe; Wg = L We;
e=l e=l

N,

Fg = L Fe.
e=J

(23)

In eqns (22,23), the subscript 9 stands for the globally assembled quantities and N e denotes
the total number of subdivided elements.

To summarize the critical features of the present method, (1) the domain size of leach
element can be arbitrarily large and (2) the base functions satisfy the governing differential
equation exactly. Therefore the present method is very effective in terms ofmodeling efforts
and the amount of numerical calculation.

5. NUMERICAL EXAMPLES

The first example considered is a bar with the equilateral cross section of altitude 3a
shown in Fig. 3, for which the exact solution is known (Sokolnikoff, 1956). The exact value
of the torsional rigidity D is given by DIG = 9fia4 IS. The present results are compared
with the exact solution and the ANSYS results, for the case of a = 1.

3a

/II

~
y/ 1//
~/ 1/~____ I

_~ 0 /
~-- ~, i,___-- /_J \ ! I

! i oj6 i I
_________-_ ~ i i. 0,9.\

--------...~J 1,\.\. \ \ \
~-.' \ \

\
\,

Fig. 3. The equilateral triangular cross section of altitude 3a. The contour of equivalent stress Caeq)

obtained for the present method is shown.
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Table I. The values ofDIG for the bar(a = I) shown in Fig. 3. (N. = the
highest harmonic number, Nd = the number of finite elements used for

ANSYS)

4335

Present with N, = I

3.115 (N. = 4)
3.116 (N. = 8)
3.117 (N. = 16)

ANSYS

3.087 (N'I = 175)
3.1 IO (Nd = 300)
3.114 (N,t = 675)

Exact

3.117
3.117
3.117

Table 2. The maximum equivalent stress O',.lm., (0',. = J 0';, +O';,./G)
for the bar shown in Fig. 3

Present with N, = I

1.493 (N. = 4)
1.499 (N. = 8)
1.500 (N. = 16)

ANSYS

1.300 (N" = 175)
1.399 (N,t = 300)
1.433 (N,t = 675)

Exact

1.500
1.500
1.500

It is apparent from Table I that the present results converge very rapidly to the exact
value only with a small number of terms, and the ANSYS finite element results converge
favorably. Table 2 lists the numerical results for the maximum value of the equivalent
stress aeq = Ja;x +a;yjG, and one can see that the present results converge extremely fast
in comparison with ANSYS results. The equivalent stress contours obtained from the
present analysis and the exact solutions are compared, and the two results are found to be
virtually undistinguishable. Therefore, only the present results are shown in Fig. 3.

As the second example, a bar with a pentagonal cross section is considered. Since no
exact solution is known, the present results for the torsional rigidity and stress are compared
in Tables 3 and 4 with finite element results. For the torsional rigidity, the finite element
result converges as fast as the present result but it is apparent that slower and less accurate
results are obtained from the finite element analysis for the stress. Figure 4 shows the stress
distribution obtained from the present method, which is confirmed to be almost identical
to the ANSYS result although the ANSYS results is not plotted here.

Next, a rectangular bar with a rectangular hole under torsion is analysed. As shown
in Fig. 5, the region is subdivided into only 8 large elements (Ne = 8). The present converging
results for the torsional rigidity with N h = 17 are compared with the ANSYS results as the
function of eccentricity, e, which is defined as e = (d-c)jc, in Fig. 6. As many as 3600
elements are needed in the ANSYS calculation to obtain results comparable to the present
results.

Table 3. The values of DIG for the bar shown in Fig. 4

Present with N, = I

0.441 (N. = 4)
0.442 (N. = 8)
0.442 (N. = 16)

ANSYS

0.440 (N" = 225)
0.441 (N,t = 900)
0.442 (N" = 3600)

Table 4. The maximum stress O',.lm., for the bar shown in Fig. 4

Present with N, = I

0.856 (N. = 4)
0.871 (N. = 8)
0.875 (N. = 16)

ANSYS

0.816 (N" = 225)
0.834 (N" = 900)
0.847 (Nd = 3600)
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1.0

Fig. 4. The equilateral pentagonal cross section with edge length of' I'. The contour of equivalent
stress (O'e.) obtained for the present method is shown.

y

----11.- X

Fig. 5. A rectangular bar with an inner rectangular hole.

6. CONCLUSIONS

In this paper, the torsion problem in bars with multiply connected cross sections is
solved by a modified Fourier series method utilizing polynomials as well as the Fourier
cosine series both of which satisfy the governing equation exactly. The present combination
of polynomials and series solutions and the proposed form of the polynomials are shown
to be very useful. The technique subdividing general cross sections into a few large convex
regions is also confirmed to be effective. The number of elements needed in the pre:sent
technique and the amount of numerical calculations are order of magnitude smaller than
those needed in typical finite element methods.
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11.1

11.0

o Present
A ANSYS

0.250.20.150.10.05
10.9 +--r-,....-,-.--,,,--r-,--,..--,---.--r-,....-,-,--,----.--r--r-,--,--,--.--,--+

0.00

8
Fig. 6. The variation of DIG for the bar shown in Fig. 5 is shown as the function of the eccentricity

e = (d-c)/c.
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